
System Interface Classes

4-12 COOL User’s Manual

System Interface Classes

4-11COOL User’s Manual

 1 #include <COOL/Timer.h> // Includes COOL timer class

 2 int main (void) {

 3 Timer t1; // Create a timer object

 4 t1.mark (); // Set start reference point

 5 for (int i = 0, j = 0; i < 10000; i++) // Loop for 10000 times and

 6 j = j + i; // Sum up numbers

 7 cout << ”Summation of integers from 0 through 10000 took ”;
 8 cout << t1.real () << ” milliseconds\n”; // Output time since mark

 9 return 0; // Return valid completion code

10 }

Line 1 includes the COOL Timer header file. Line 3 creates a new timer object and line
4 establishes the starting point of the timing operation by setting the mark. Lines 5 and 6
implement a loop counting from 1 to 10000 that calculates the sum of these values. Line
8 contains an embedded call to the timer object to report the elapsed time from the mark
to now. Note that since this call is embedded in the output statements, the time reported
is not technically correct. A more accurate reading could be established by calling this
function and saving the value in a temporary variable for later use in the output state-
ment. Finally, line 9 returns a successful completion code.

The following shows the output of the program:

Summation of integers from 0 through 10000 took 20 milliseconds

System Interface Classes

4-10 COOL User’s Manual

Due to operating system dependencies, the accuracy of all member function results may
not be as documented. For example, some operating systems do not support timers with
microsecond resolution. In those cases, the values returned are provided to the nearest
millisecond or other unit of time as appropriate. See the Timer.h header file for system-
specific notes.

Name: Timer — A timing facility for C++

Synopsis: #include <COOL/Timer.h>

Base Classes: Generic

Friend Classes: None

Constructors: Timer ();
Creates an instance of the Timer class with the mark set to creation time.

Member Functions: long all();
Returns the number of milliseconds spent in the user process and the operating sys-
tem since the last reference point (mark).

long all_usec();
Returns the number of microseconds spent in the user process and the operating
system since the last reference point (mark).

void mark ();
Sets the reference time to now.

long real();
Returns the number of milliseconds of wall clock time since the last reference point
(mark).

long system();
Returns the number of milliseconds spent in the operating system since the last ref-
erence point (mark).

long system_usec();
Returns the number of microseconds spent in the operating system since the last
reference point (mark).

long user();
Returns the number of milliseconds spent in the user process since the last refer-
ence point (mark).

long user_usec();
Returns the number of microseconds spent in the user process since the last refer-
ence point (mark).

Timer Example 4.9 The following program uses the COOL Timer class to calculate the time for a

loop to sum up a sequence of integer values. Note that although this example reports
results in milliseconds, support timing granularity on your particular computer and op-
erating system may be different.

System Interface Classes

4-9COOL User’s Manual

 1 #include <COOL/Date_Time.h> // Include Date_Time class

 2 int main (void) {

 3 set_default_country (UNITED_STATES); // Set default country code

 4 set_default_time_zone (US_CENTRAL); // Set default time zone

 5 Date_Time d1; // Create Date_Time object

 6 d1.set_local_time (); // Set current system time

 7 cout << ”Local date/time is: ” << d1 << ”\n”; // Output date in US format

 8 d1.set_country (UNITED_KINGDOM); // Set country to UK

 9 d1.set_time_zone (GB_EIRE); // Set Greenwich Mean Time

10 cout << ”GMT date/time is: ” << d1 << ”\n”; // Output date/time at GMT

11 d1.parse(”1 April 1890, 4:30pm”); // Parse some date in UK format

12 cout << ”Date/time parsed is: ” << d1 << ”\n”; // Output date/time parsed

13 d1.set_country (FRANCE); // Set country to France

14 d1.set_time_zone (WET); // Western European Time zone

15 cout << ”Date/time in France: ”<< d1 << ”\n”; // Output date/time in France

16 Date_Time d2; // Create another object

17 d2.set_local_time (); // Set current system time

18 cout << ”Date/time set is: ” << d2 << ”\n”; // Output date in US format

19 d2.decr_month (3); // Move back three months

20 cout << ”Date/time three months earlier: ” << d2 << ”\n”; // Output date

21 cout << ”Duration between dates is ”; //

22 cout << d1.ascii_duration (d2) << ”\n”; // Output time duration

23 return 0; // Return valid success code

24 }

Line 1 includes the COOL Date_Time class header file. Lines 3 and 4 establish the
default country and time zone for all Date_Time objects in this application to be
UNITED_STATES and US_CENTRAL, respectively. Line 5 instantiates an uninitialized ob-
ject, line 6 sets its value to be the local system date and time, and line 7 outputs this
value. Lines 8 and 9 change the country to UNITED_KINGDOM and the time zone to
GB_EIRE (Greenwich Mean Time). Line 10 outputs the time zone corrected date and
time values in English format. Line 11 sets the new value of the Date_Time object by
parsing a character string, and line 12 outputs the new setting. Lines 13 and 14 change
the country to FRANCE and the time zone to WET and output the value again. Note that the
time zone didn’t affect the value printed, but the format based on the country code
changed. Lines 16 through 18 output another Date_Time object for the UNITED_STATES
in US_MOUNTAIN time zone, and sets its value to the current system time. Line 19 decre-
ments the date by three months, and line 20 shows the resulting value. Lines 21 and 22
output in ASCII format the time difference between the two objects. Finally, line 23
exits the program with a valid successful completion code.

The following shows the output of the program:

Local date/time is: United States 02–13–1990 11:28:40 US/Central

GMT date/time is: United Kingdom 13–02–1990 17:28:40 GB–Eire

Date/time parsed is: United Kingdom 01–04–1890 16:30:00 GB–Eire

Date/time in France: France 01–01/1990 16:30:00 WET

Date/time set is: United States 02–13–1990 10:28:40 US/Mountain

Date/time three months earlier: United States 11–15–1989 10:28:40 US/Mountain

Duration between dates is 99 years, 35 weeks, 2 days, 0 hours, 58 minutes, 40 seconds

Timer Class 4.8 The Timer class is publicly derived from the Generic class and provides an inter-

face to system timing. It allows a C++ program to record the time between a reference
point (mark) and now. This class uses the system time(2) interface to provide time reso-
lution at either millisecond or microsecond granularity, depending upon operating sys-
tem support and features. Since the time duration is stored in a 32-bit word, the
maximum time period before rollover occurs is about 71 minutes.

System Interface Classes

4-8 COOL User’s Manual

SUNDAY “Sunday”
MONDAY “Monday”
TUESDAY “Tuesday”
WEDNESDAY “Wednesday”
THURSDAY “Thursday”
FRIDAY “Friday”
SATURDAY “Saturday”

Enumeration Declaration Character String

JANUARY “January”
FEBRUARY “February”
MARCH “March”
APRIL “April”
MAY “May”
JUNE “June”
JULY “July”
AUGUST “August”
SEPTEMBER “September”
OCTOBER “October”
NOVEMBER “November”
DECEMBER “December”

Date_Time Example 4.7 The following program creates two Date_Time objects and initializes one to the

current system date and time and the other to the date and time specified in a character
string. Several conversions between country formats and time zones are performed,
along with manipulating one of the dates by subtracting three months. Finally, the
length of time between the two objects is displayed.

System Interface Classes

4-7COOL User’s Manual

Country.h File 4.5 The country.h include file contains enumeration declarations for country names

of type country. The file declares a static char* array of printable country names. The
constants in the enumerated type can be used as indexes for these names. In the follow-
ing table, the enumeration declaration is on the left and the static char* string is on the
right.

Name: country.h — Symbolic and string country names

Synopsis: #include <COOL/country.h>

Enumeration Declaration Character String

UNKNOWN_COUNTRY “Unknown Country”
UNITED_STATES “United States”
FRENCH_CANADIAN “French Canadian”
LATIN_AMERICA “Latin America”
NETHERLANDS “Netherlands”
BELGIUM “Belgium”
FRANCE “France”
SPAIN “Spain”
ITALY “Italy”
SWITZERLAND “Switzerland”
UNITED_KINGDOM “United Kingdom”
DENMARK “Denmark”
SWEDEN “Sweden”
NORWAY “Norway”
GERMANY “Germany”
PORTUGAL “Portugal”
FINLAND “Finland”
ARABIC_COUNTRIES “Arabic Countries”
ISRAEL “Israel”

Calendar.h File 4.6 The calendar.h include file contains enumeration declarations for day and

month names of the types day_of_week and months. The file declares two static char*
arrays of printable day and month names. The constants in the enumerated types can be
used as indexes for these names. In addition, an array indexed by type month specifying
the number of days in the month is also provided. Finally, the file defines several macros
for typical date and time constants, along with a macro determining if a year is a leap
year. In the following tables, the enum declaration is on the left and the static char*
string is on the right.

Name: calendar.h — Symbolic and string calendar names

Synopsis: #include <COOL/calendar.h>

Enumeration Declaration Character String

System Interface Classes

4-6 COOL User’s Manual

Time_zone.h File 4.4 The time_zone.h include file contains enumeration declarations for time zone

names of type time_zone. The file declares a static char* array of printable names. The
constants in the enumerated type can be used as indexes for these names. In the follow-
ing table, the enum declaration is on the left and the matching static char* string is on
the right.

Name: time_zone.h — Symbolic and string time zone names

Synopsis: #include <COOL/time_zone.h>

Enumeration Declaration Character String

UNKNOWN_TIME_ZONE “Unknown Time Zone”
US_EASTERN “US/Eastern”
US_CENTRAL “US/Central”
US_MOUNTAIN “US/Mountain”
US_PACIFIC “US/Pacific”
US_PACIFIC_NEW “US/Pacific–New”
US_YUKON “US/Yukon”
US_EAST_INDIANA “US/East–Indiana”
US_ARIZONA “US/Arizona”
US_HAWAII “US/Hawaii”
CANADA_NEWFOUNDLAND “Canada/Newfoundland”
CANADA_ATLANTIC “Canada/Atlantic”
CANADA_EASTERN “Canada/Eastern”
CANADA_CENTRAL “Canada/Central”
CANADA_EAST_SASKATCHEWAN “Canada/East–Saskatchewan”
CANADA_MOUNTAIN “Canada/Mountain”
CANADA_PACIFIC “Canada/Pacific”
CANADA_YUKON “Canada/Yukon”
GB_EIRE “GB–Eire”
WET “WET”
ICELAND “Iceland”
MET “MET”
POLAND “Poland”
EET “EET”
TURKEY “Turkey”
W_SU “W–SU”
PRC “PRC”
KOREA “Korea”
JAPAN “Japan”
SINGAPORE “Singapore”
HONGKONG “Hongkong”
ROC “ROC”
AUSTRALIA_TASMANIA “Australia/Tasmania”
AUSTRALIA_QUEENSLAND “Australia/Queensland”
AUSTRALIA_NORTH “Australia/North”
AUSTRALIA_WEST “Australia/West”
AUSTRALIA_SOUTH “Australia/South”
AUSTRALIA_VICTORIA “Australia/Victoria”
AUSTRALIA_NSW “Australia/NSW”
NZ “NZ”

System Interface Classes

4-5COOL User’s Manual

void set_local_time ();
Sets the date and time to local time as determined by the time zone and country
code values.

inline void set_time_zone (time_zone tz);
Sets the time zone to the value tz.

void start_day (int n = 1);
Advances the time the specified number of days, setting the time to 00:00:00. The
default is one.

void start_hour (int n = 1);
Advances the time by the specified number of hours, setting the time to hh:00:00.
The default is one.

void start_min (int n = 1);
Advances the time by the specified number of minutes, setting the time to
hh:mm:00. The default is one.

void start_month (int n = 1);
Advances the time by the specified number of months, setting the time to 01/mm/
yyyy 00:00:00. The default is one.

void start_week (int n = 1);
Advances the time by the specified number of weeks, setting the time to Monday
00:00:00. The default is one.

void start_year (int n = 1);
Advances the time by the specified number of years, setting the time to 01/01/yyyy
00:00:00. The default is one.

Friend Functions: friend istream operator>> (istream& is, Date_Time& dt);
Overloads the input operator to read the input stream is, and parses the character
string containing the date and time information. The result is returned in the date
and time object dt.

friend ostream operator<< (ostream& os, const Date_Time* dt);
Overloads the output operator for a pointer to a date-and-time object. The object
writes the output stream os with a character string representing the date and time
object dt formatted for the appropriate country.

friend ostream operator<< (ostream& os, const Date_Time& dt);
Overloads the output operator for a reference to a date-and-time object. The object
writes the output stream os with a character string representing the date and time
object dt formatted for the appropriate country.

inline friend void set_default_country (country c);
Sets the default country for the class to the value c.

inline friend void set_default_time_zone (time_zone tz);
Sets the default time zone for the class to the value tz.

System Interface Classes

4-4 COOL User’s Manual

inline long operator– (const Date_Time& dt);
Computes the interval of time between the date and time object and dt.

Date_Time& operator= (const Date_Time& dt);
Overloads the assignment operator to replicate the value of one date and time ob-
ject to another.

Date_Time& operator+= (long seconds);
Performs interval addition and assignment.

Date_Time& operator–= (long seconds);
Performs interval subtraction and assignment.

inline Boolean operator== (const Date_Time& dt) const;
Overloads the equality operator for the Date_Time class. This function returns
TRUE if two objects represent the same time; otherwise, this function returns
FALSE.

inline Boolean operator!= (const Date_Time& dt) const;
Overloads the inequality operator for the Date_Time class. This function returns
FALSE if two objects represent the same time; otherwise, this function returns
TRUE.

inline Boolean operator< (const Date_Time& dt) const;
Overloads the less-than operator for the Date_Time class. This function returns
TRUE if the date and time object represents a date and time before dt; otherwise,
this function returns FALSE.

inline Boolean operator<= (const Date_Time& dt) const;
Overloads the less-than-or-equal operator for the Date_Time class. This function
returns TRUE if the date and time object represents a date and time before or equal
to dt; otherwise, this function returns FALSE.

inline Boolean operator> (const Date_Time& dt) const;
Overloads the greater-than operator for the Date_Time class. This function returns
TRUE if the date and time object represents a date and time after dt; otherwise, this
function returns FALSE.

inline Boolean operator>= (const Date_Time& dt) const;
Overloads the greater-than-or-equal operator for the Date_Time class. This
function returns TRUE if the date and time object represents a date and time equal
to or after dt; otherwise, this function returns FALSE.

void parse (char* str, int settz = 0);
Parses the character string str input and fills all appropriate data members of the
date and time object. If no value is provided for settz, the parsing algorithm does not
search for a time zone. The parser recognizes most valid input and always parses
relative to the time zone. Fields not specified are defaulted where appropriate. Ille-
gal input results in an Error exception being raised.

inline void set_country (country c);
Sets the country to the value c.

void set_gm_time ();
Sets the date and time to Greenwich mean time.

System Interface Classes

4-3COOL User’s Manual

void end_year (int n = 1);
Advances the time by the specified number of months, setting the time to
31/12/yyyy 23:59:59. The default is one.

inline const char* get_country () const;
Returns the country in ASCII format.

inline int get_hour () const;
Returns the value of the hour data member in the object (0–23).

inline int get_mday () const;
Returns the value of the day of the month data member in the object (1–31).

inline int get_min () const;
Returns the value of the minutes data member in the object (0–59).

inline int get_mon () const;
Returns the value of the months data member in the object (0–11).

inline int get_sec () const;
Returns the value of the seconds data member in the object (0–59).

inline const char* get_time_zone () const;
Returns the time zone in ASCII format.

inline int get_wday () const;
Returns the value of the day of the week data member in the object (Sunday=0).

inline int get_yday () const;
Returns the value of the day of the year data member in the object (0–365)

inline int get_year () const;
Returns the value of the year data member in the object.

void incr_day (int n = 1);
Increments the time by the specified number of days. The default is one.

void incr_hour (int n = 1);
Increments the time by the specified number of hours. The default is one.

void incr_min (int n = 1);
Increments the time by the specified number of minutes. The default is one.

void incr_month (int n = 1);
Increments the time by the specified number of months. The default is one.

void incr_sec (int n = 1);
Increments the time by the specified number of seconds. The default is one.

void incr_week (int n = 1);
Increments the time by the specified number of weeks. The default is one.

void incr_year (int n = 1);
Increments the time by the specified number of years. The default is one.

inline Boolean is_day_light_savings () const;
Returns TRUE if daylight saving time is in effect; otherwise, returns FALSE.

System Interface Classes

4-2 COOL User’s Manual

Date_Time (time_zone tz, country c);
Allocates a date and time object with time zone tz and country code c.

Member Functions: const char* ascii_date () const;
Returns the date in ASCII format for the appropriate time zone and country.

const char* ascii_date_time () const;
Returns the date and time in ASCII format for the appropriate time zone and coun-
try.

const char* ascii_duration (const Date_Time& dt) const;
Returns the duration of time between the date/time object and dt in ASCII format.

const char* ascii_time () const;
Returns the time in ASCII format for the appropriate time zone and country.

inline void decr_day (int n = 1);
Decrements the time by the specified number of days. The default is one.

inline void decr_hour (int n = 1);
Decrements the time by the specified number of hours. The default is one.

inline void decr_min (int n = 1);
Decrements the time by specified number of minutes. The default is one.

void decr_month (int n = 1);
Decrements the time by specified number of months. The default is one.

inline void decr_sec (int n = 1);
Decrements the time by specified number of seconds. The default is one.

inline void decr_week (int n = 1);
Decrements the time by the specified number of weeks. The default is one.

void decr_year (int n = 1);
Decrements the time by the specified number of years. The default is one.

void end_day (int n = 1);
Advances the time by the specified number of days, setting the time to 23:59:59.
The default is one.

void end_hour (int n = 1);
Advances the time by the specified number of hours, setting the time to hh:59:59.
The default is one.

void end_min (int n = 1);
Advances the time by the specified number of minutes, setting the time to
hh:mm:59. The default is one.

void end_month (int n = 1);
Advances the time by the specified number of months, setting the time to 31/mm/
yyyy 23:59:59. The default is one.

void end_week (int n = 1);
Advances the time by the specified number of weeks, setting the time to Sunday
23:59:59. The default is one.

4-1COOL User’s Manual

SYSTEM INTERFACE
CLASSES

Introduction 4.1 The COOL system interface classes encapsulate common system-specific func-

tionality such as date-and-time manipulation and timing facilities. These classes pro-
vide a single interface for an application program no matter which of the supported
platforms it is running on. This facilitates a single source base for an application de-
signed to run on several types of hardware. The following classes are discussed in this
section:

• Date_Time

• Timer

The Date_Time class implements time zone-independent date and time functions, in-
cluding time zone changes, calendar date manipulation, and complete input parsing and
output formatting capability for significant country or language formats. The Timer
class uses the system time(2) interface to provide time resolution between a reference
point and now. The accuracy of the time period reported is system-dependent, but will
generally be either at millisecond or microsecond granularity.

Requirements 4.2 This section discusses the system interface classes. It assumes you have a working

understanding of the C++ language and type system. In addition, you should under-
stand the distinction between overloaded operators and friend functions.

Date_Time Class 4.3 The Date_Time class executes time zone-independent date and time functions.

This class supports calendar operations and input and output based upon the value of an
environmental synonym, such as US_CENTRAL. This class supports all time zones in
the world, along with several special cases requiring alternate handling based upon po-
litical or daylight saving time differences. Unlike the ANSI C date and time functions,
this class supports dates before the epoch (January 1, 1970). Year values specified be-
tween 0 and 99 are assumed to be in the twentieth century.

Name: Date_Time — Time zone–independent date and time class

Synopsis: #include <COOL/Date_Time.h>

Base Classes: Generic

Friend Classes: None

Public Constructors: Date_Time ();
Allocates a date and time object with the default time zone and country. A Warning
exception is raised if the default country or the default time has not been set for the
class.

Date_Time (const Date_Time& dt);
Duplicates the size and entries of a date and time object dt.

Printed on: Wed Apr 18 07:04:29 1990

Last saved on: Tue Apr 17 13:45:25 1990

Document: s4

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

